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Abstract

Geographic clustering of innovative industries is associated with the entry and success

of spinoff firms. We develop a model to explain the multiple empirical patterns regarding

cluster growth and spinoff formation and performance, without relying on agglomeration

externalities. Clustering naturally follows from spinoffs locating near their parents. In our

model, firms grow and spinoffs form through the discovery of new submarkets based on in-

novation. Rapid and successful innovation creates more opportunities for spinoff entry and

drives a region’s growth. Our model provides baseline estimates of levels of agglomeration

that can be attributed to this process of innovation and spinoff formation.
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1 Introduction

Geographic clustering of people and organizations is a fact of modern economic life. At

the aggregate level, around half the world’s population is located in cities. At the indus-

try level, Ellison and Glaeser [1997] and Duranton and Overman [2005] show that in the

modal manufacturing industry in the U.S. and U.K. respectively, plants are more clustered

geographically than would be expected if they located randomly. These simple facts have

widely been interpreted to reflect some sort of advantage of clustering. Wages and prices

are higher in cities and in industry clusters such as Silicon Valley (Rosenthal and Strange

[2004], Puga [2010]). Consequently, businesses in clusters must enjoy some kind of ad-

vantages in order to be competitive.

These advantages appear to extend well beyond the natural advantages some regions

have for certain types of industries, such as the weather favoring the location of the movie

industry in Hollywood (Ellison and Glaeser [1999]). New Economic Geography models

(Fujita et al. [1999]) feature the role that costs of transporting goods play in inducing people

and businesses to cluster in cities. Models of industry clustering commonly feature ideas

proposed by Marshall [1890] about how clustering gives rise to agglomeration economies

benefiting all firms located in clusters. These economies are related to the pooling of la-

bor, the co-location of suppliers and producers, and localized spillovers of technological

knowledge (Jaffe et al. [1993], Duranton and Puga [2004]). Although it is difficult to

test the mechanisms underlying clustering, numerous studies find evidence consistent with

the advantages of clusters, such as firms in clusters performing better, entry being concen-

trated in clusters, and firms in different industries clustering to a greater degree the more

they share similar types of labor, inputs, and knowledge (Audretsch and Feldman [2004],

Rosenthal and Strange [2004], Ellison et al. [2010], Greenstone et al. [2010], Puga [2010]).

In recent years new evidence has emerged about how industry clusters evolve that calls
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out for explanation. Studies of the origins of firms in the automobile, tire, semiconductor,

disk drive, and biotherapeutics industries, all of which were innovative in their time and

evolved to be highly clustered, reveal a similar pattern. The regions where these industries

ultimately clustered initially had one or at most a few related early successful firms. What

distinguished them from other regions that also had successful early producers was that

subsequently they grew through entry of new firms that were mainly spinoffs descended

from their early successful producers. (We define spinoffs as entrants founded by individ-

uals who previously worked for incumbent firms in the same industry. We refer to the firm

where the primary founder last worked as the spinoff’s “parent.”) In a number of instances,

the early successful firms receded but the region nonetheless prospered, propelled forward

by successive generations of spinoffs. Geographic modellers are increasingly recognizing

the importance of entrepreneurship for clustering (Glaeser et al. [2010]), but mainstream

theories of clustering generally abstract from such forces and thus cannot readily address

the accumulating evidence connecting clustering and spinoffs. Many studies of spinoffs

in the last ten years have focused on innovative manufacturing industries, where cluster-

ing is also prominent (Feldman [1994], Audretsch and Feldman [2004]), and the growing

body of empirical evidence regarding spinoff formation and performance is now attracting

increased attention in its own right (see Klepper [2009b]).

The main purpose of this article is to organize the empirical evidence on spinoffs and

clustering across industries and to develop a model to explain these stylized facts. Why do

firms agglomerate especially in innovative industries? Why is so much of the entry driving

the growth of agglomerative clusters coming in the form of spinoffs? And why are these

spinoffs typically more successful, often becoming the industry leaders? We construct a

simple theory of spinoffs that is related to firms growing over time through the discovery of

new submarkets based on innovation. Spinoffs are assumed to locate close to their parents,

as has been commonly found, in accordance with more general findings that new firms of
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all kinds tend to locate close to where their founders have previously worked and resided

(Figueiredo et al. [2002], Romanelli and Feldman [2006], Stam [2007]). We show that

spinoffs (locating near their parents) naturally generate clustering.

Our model explains why the growth of an industry in a particularly concentrated region

typically is marked by spinoffs, even if they only capture profits that would have gone to

their parents. A simple insight powers the model. Innovation begets more innovation in a

positive feedback cycle (Arthur [1990], Danneels [2002]), creating more new profit oppor-

tunities for more successful firms. When this dynamic gets going, rapid innovation opens

the door for spinoffs to enter, driving the entire region’s growth. Innovative capabilities are

not directly observable, but when we see clusters of spinoffs, we get a strong signal about

their innovative potential.

We posit that a firm’s innovations build on the expertise it already has. Evolving inno-

vative capabilities reflect organizational learning (Mitchell [2000]). Our model of new

business opportunities growing out of existing ones is similar in spirit to recombinant

growth (Weitzman [1998]), endogenous technological change (Klette and Kortum [2004]),

combinatorial technological evolution (Arthur [2009]), and creative development (Fein-

stein [2015]). As in Klette and Kortum [2004], in particular, business units within a firm

beget new business units. The new feature here is that newly created business units may be

spun off into independent firms. As innovation makes spinoff entry possible, the implica-

tion is that spinoffs initially (upon entering the industry) produce products that are similar

to their parents’, and thus their performance correlates with their parents’ performance. If

an initial entrant in a region discovers a particularly rich vein of innovations, the spinoffs

that descend there will be especially well-positioned for success.

Our model does not feature traditional agglomeration economies, but does include el-

ements of such models as part of its structure. Indeed, in our model firms do not gain any

advantages from being located in a booming cluster. We provide useful baseline estimates
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of the Ellison-Glaeser index of agglomeration in the absence of such localized externalities.

Empirical measures of agglomeration could be compared against this baseline to assess the

impact of localized (pecuniary or non-pecuniary) externalities over and above what can be

attributed to a natural process of innovation and spinoff formation.

The article is organized as follows. In Section 2 we relate the accumulating evidence

about spinoffs and their role in industry clustering. Section 3 lays out our model. In Sec-

tion 4 we show that the existence of spinoffs leads to clustering and offer an explanation

why more innovative industries tend to be more highly clustered. In Section 5 we show

how spinoff entry contributes to the growth of a cluster in a particular region. In Section 6

we show that our model is consistent with the empirical regularities about spinoff formation

and performance. In Section 7 we offer baseline estimates of levels of agglomeration that

can be attributed solely to the process of innovation and spinoff formation. Section 8 dis-

cusses the absence of agglomeration economies – and the prospect of incorporating them –

in our model. The appendix contains proofs of all results as well as a glossary of symbols.

2 Industry Evidence

We consider the evolution of five U.S. industries that are well known for clustering: auto-

mobiles around Detroit, tires around Akron (Ohio), semiconductors and disk drives around

Silicon Valley, and biotherapeutics around San Francisco, Boston, and San Diego. Each

of these industries was highly innovative and grew greatly over time, attracting many en-

trants. Various studies have attempted to piece together the organizational and geographic

heritage of the entrants in each of the industries to understand the forces giving rise to

clustering. The picture that emerges is most comprehensive for autos, semiconductors, and

disk drives, reflecting the availability of data on the periodic market shares of the leading

producers. For the tire industry, only the heritage of producers in Ohio was traced, and for

the biotherapeutics industry the analysis largely focused on the San Diego cluster. Despite
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differences in coverage, the patterns in the five industries are remarkably similar. They are

summarized in Table 1 as eleven stylized facts.

Patterns of Cluster Growth and Spinoff Entry

1. More innovative industries have more often become highly clustered.
2. Clusters typically were characterized by an early successful firm and then grew subse-
quently through entry.
3. A greater percentage of entrants in the clusters than elsewhere were spinoffs.
4. Spinoffs accounted for a disproportionate share of the leaders in the clusters relative to
their share of entrants overall.
5. Clusters prospered after spinoffs entered, even while in some cases the flagship firm that
seeded the region subsequently declined.
6. Spinoffs performed better than other entrants.
7. Larger firms spawned spinoffs at a higher rate.
8. Spinoffs from larger firms were superior performers.
9. Spinoffs that entered at a larger size tended to perform better.
10. Spinoffs in clusters outperformed spinoffs elsewhere.
11. Spinoffs initially produced similar types of products as their parents.

Table 1: Stylized facts based on studies of the automobile, tire, semiconductor, disk drive, and
biotherapeutics industry clusters.

Fact #1 is inspired by the observation that the five industries chosen for their famous

clusters have all experienced periods of rapid innovation. Indeed, this is no coincidence.

Comparing across a host of industries, those that are more innovative – say, with greater

total research and development expenditure as a percentage of sales – tend to be more

concentrated geographically (Audretsch and Feldman [1996, 2004]).

Fact #2 indicates that the clusters in each of these five industries typically had a flagship

early entrant and then grew over time through entry. For example, Olds Motor Works was

the first great firm in the Detroit area. It entered in 1901 and soon became the largest firm

in the industry, attaining a peak market share of 26% in 1905 . But Detroit was much more

than Olds Motor Works. Over 100 firms entered in the Detroit area after Olds through 1924

(after which entry into the industry was negligible). By 1915, 11 of these firms were among
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the largest 15 firms in the industry and the collective market share of the Detroit leaders

was 83% (Klepper [2007, 2009a, 2010]). Fairchild Semiconductor was the analog of Olds

Motor Works in the semiconductor industry. It entered in 1957 and grew to be the second

largest firm in the industry by 1966, when its market share peaked at 13% . Over 100 other

firms entered the semiconductor industry in the Silicon Valley area from 1957 to 1986, and

as of 1985, eight of the top 16 firms with a collective market share of 42% were based in

the Silicon Valley area (Klepper [2009a, 2010]). BF Goodrich and IBM were the flagship

firms in the Akron and Silicon Valley clusters in the tire and disk drives industries respec-

tively, both of which were spurred forward by entrants following the success of these two

pioneers (Buenstorf and Klepper [2009], Christensen [1993], McKendrick et al. [2000]).

Hybritech appears to have played a similar role in the San Diego biotherapeutics cluster

(Mitton [1990]).

Facts #3 and 4 indicate that the entrants that fuelled the growth of the clusters were

disproportionately spinoffs of indigenous producers.1 The most extreme case was semi-

conductors. Every one of the leaders of the industry that were based in Silicon Valley was

a spinoff of a Silicon Valley incumbent, which is not surprising given that nearly all the en-

trants in Silicon Valley were spinoffs of indigenous semiconductor firms. In contrast, most

of the leaders of the industry based outside of Silicon Valley were experienced electronics

producers and diversifiers from other industries, reflecting the much higher percentage of

entrants outside Silicon Valley with these backgrounds (Klepper [2009a, 2010]). Similarly,

in autos and disk drives a much higher percentage of the entrants in Detroit and Silicon

Valley than elsewhere were spinoffs,2 and nearly all the later leaders in the two clusters

were spinoffs of indigenous firms (Klepper [2007, 2010], Agarwal et al. [2004], Franco

1There are always some entrants that are challenging to classify, and the various studies document how
these cases were handled.

2Almost half of all spinoffs in the disk drive industry located in Silicon Valley (Kenney and von Burg
[1999]), whereas early pioneers in the industry were distributed across many other cities, including Tulsa,
Minneapolis, and San Antonio, and were especially prominent in Los Angeles (Christensen [1993]).
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and Filson [2006]). The percentage of entrants that were spinoffs in the biotherapeutics

industry was also markedly higher in the San Diego, San Francisco, and Boston clusters

than elsewhere (Romanelli and Feldman [2006]), as was true as well for tire entrants origi-

nating around Akron versus the rest of Ohio (Buenstorf and Klepper [2009]). These firms

predominantly originated from incumbent firms located close by.

Fact #5 reflects that clusters prospered (i.e., grew faster than other regions) after spinoffs

entered and became industry leaders, even though in the autos, semiconductors, and disk

drive clusters the early flagship companies in these regions declined (Klepper [2009a],

Christensen [1993]). The semiconductor industry is particularly interesting because it al-

lows for the construction of a counterfactual case involving an early flagship company in

another region that did not give birth to so many spinoffs. The leading firm in the indus-

try for many years was Texas Instruments (TI), which entered before Fairchild in 1952 in

Dallas. TI and Fairchild were the pioneers of high performance silicon transistors and in-

tegrated circuits (ICs). Ultimately, Fairchild’s management was overwhelmed by the wave

of innovations it discovered, as discussed below. This tsunami sustained several spinoffs

(and eventually sank the firm). TI had far fewer spinoffs than Fairchild (and did not de-

cline like Fairchild) (Klepper [2009a]). Of course, Silicon Valley and not Dallas became

the center of the industry, suggesting that the flood of spinoffs that emerged from Fairchild

might actually have spurred the growth of the semiconductor cluster in Silicon Valley.

Fact #6 is that spinoffs were distinctive performers. In the automobile industry spinoffs

accounted for about half of firms classified as leaders of the industry between 1895 and

1966 despite making up only 20% of the 725 entrants (Klepper [2007]). The performance

of spinoffs is similar for semiconductor entrants (Klepper [2009a]). The disk drive industry

is an extreme case, with nearly all of the leading producers as of 1989 having descended

from IBM over a period of about 30 years (Franco and Filson [2006]). The available data

for tires and biotherapeutics also seems consistent with this general pattern (Buenstorf and
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Klepper [2009], Romanelli and Feldman [2006]).

Given the importance of spinoffs in all the industries, it is worthwhile to step back for

a moment to discuss the forces contributing to spinoffs. The studies of these industries

discuss the circumstances behind many of the leading spinoffs. Many seem to have been

founded due to some kind of disagreement in the parent firm about new technological ideas

or management practices. It was not uncommon for leading firms to be managed by tech-

nologists with limited ability to assess the market potential of new ideas (Agarwal et al.

[2004], Lécuyer [2006], Klepper [2007, 2009a]). In other instances, individuals with lim-

ited industry experience gained control of leading firms; this occurred especially after the

firms were acquired by firms in other industries (Klepper [2007, 2009a]). These circum-

stances conspired at times to make firms unwilling to pursue ideas that turned out to have

significant market potential. Sometimes others outside the firm could better evaluate the

prospects of these ideas and would sponsor efforts by employees that worked on the ideas

to form their own spinoff companies to pursue the ideas (Klepper [2007, 2009a]). Fairchild

illustrates these themes. It suffered three notable managerial mistakes. First, while man-

aged by technologists with little management experience, it developed the first ICs but did

not recognize their market potential (Moore and Davis [2004]). Second, it was controlled

by a defense contractor with little appreciation for the semiconductor industry’s use of

stock options as incentives. And third, it established R&D and manufacturing at separate

locations and had difficulty mediating conflict between the divisions, making innovating

difficult (Bassett [2002]). Each of these disagreements caused top employees to leave and

form spinoffs, including, famously, Intel (Lécuyer [2006]). Fairchild was perhaps an ex-

treme case, but other firms such as Olds Motor Works suffered similar conflicts that led to

many spinoffs (Klepper [2007]). Conflicts, even at well-established firms, are inevitable,

and they appear to arise unpredictably.

Despite the ubiquity of disagreements in the origins of spinoffs, the existence of spinoffs
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does not indicate incompetence at the parent firm. Quite the contrary. As facts #7 and 8

indicate, the largest firms spawned spinoffs at the highest rate, and their spinoffs were

superior performers. Fairchild was the exemplar. Among the seven leading semiconductor

producers in Silicon Valley other than Fairchild as of 1985, five were spinoffs of Fairchild

and the other two were founded by employees of other semiconductor firms that previously

had worked at Fairchild (Klepper [2009a, 2010]). Fairchild spawned so many spinoffs that

its offspring were cleverly dubbed the Fairchildren.

IBM and its successful descendants had a similar effect on the disk drive industry.3 Of

40 spinoffs that entered the disk drive industry by 1993, 28 had parents that ranked amongst

the top ten leaders by market share at some point between 1976 and 1992, including nine

out of the ten spinoffs that themselves made it onto this elite list (Franco and Filson [2006]).

These firms also survived longer than spinoffs with less distinguished parents.4 As an ex-

ample of this star-studded lineage, the very top firm in 1992, Conner, was a spinoff of

Seagate (the top firm for much of the late ’80s), whose lineage traces through Shugart As-

sociates, Memorex and eventually back to IBM, all industry leaders at some point (Franco

and Filson [2006]).

In autos, all the leading spinoffs in the Detroit area either descended from Olds Motor

Works or from three other early leaders, Cadillac, Ford, and Buick, that benefited from

subcontracting from Olds (Klepper [2007]). Similarly, tire spinoffs founded by individuals

that had worked for the big three Akron firms – Goodrich, Goodyear, and Firestone – sur-

vived markedly longer than other spinoffs (Buenstorf and Klepper [2009]). No information

is reported about the performance of spinoffs in biotherapeutics, but similar to the other

industries the lead early producer in the San Diego cluster, Hybritech, was a fertile source

of spinoffs with 13 descendants over its first 10 years (Mitton [1990]).

3The spinoffs of a firm and all the spinoffs of its spinoffs are called the firm’s descendants.
4Our calculations draw on data presented in Christensen’s [1993] Table 3 and Figure 7, as well as Franco

and Filson’s [2006] Table 1.
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A few other stylized facts based on more limited data can also be established. Fact #9

is based on data on the entry sizes of spinoffs that were compiled for the automobile and

tire industries (Klepper [2007, 2010], Buenstorf and Klepper [2009]). In both industries,

spinoffs that entered at larger sizes and had larger parents (at their time of entry) turned out

to be superior performers. Fact #10, that spinoffs located in clusters performed better than

spinoffs outside of these clusters, also relies on data on survival rates in the automobile and

tire industries (Klepper [2007, 2010], Buenstorf and Klepper [2009]), and accords with a

study of Dutch publishing firms located inside and outside of Amsterdam (Heebels and

Boschma [2011]). Fact #11 is based on data that were compiled for the semiconductor and

disk drive industries about the types of products that firms produced (Klepper et al. [2011],

Franco and Filson [2006]).5 Not surprisingly, spinoffs initially produced products more

like those produced by their parents than other firms in their industry.

These eleven facts reflect the key patterns about spinoffs and clustering that our model

will address.

3 Innovation and Industrial Evolution

An industry is assumed to be composed of niches or submarkets that are discovered through

innovation. Each submarket possesses certain characteristics or attributes, and we can iden-

tify a submarket by specifying its attributes. There is an uncountably infinite set S of pos-

sible attributes, and we represent a submarket as a finite subset x ⊂ S. That is, the set of

attributes present in a submarket {s : s ∈ x} fully characterizes that submarket, x. We

let |x| denote the number of attributes that describe and together define submarket x.6 For

simplicity, we assume that the existence of one submarket has no effect on the demand or

costs in other submarkets.

5Data on the laser industry also supports the overlap between the initial products of spinoffs and those of
their parents (Klepper and Sleeper [2005]).

6We might think of this as the complexity of the submarket.
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New submarkets are discovered through innovation. A firm may innovate on any of its

submarkets by incorporating a single new attribute. So, a firm with expertise in submarket

x may discover a new submarket x′ = x ∪ {s} for any s ∈ S\x. This does not destroy the

pre-existing submarket x. The firm simply may expand into the new submarket x′ as well.

We assume that a continuous probability distribution on S determines which attribute s is

incorporated in the discovery of a new submarket.7

Our core idea is that the process of innovation is based on firms building off of what

they know. Because newly discovered attributes are combined with existing submarkets, a

firm’s innovative capabilities evolve as the firm gains experience in more submarkets. Firms

thus expand into new submarkets that are related to submarkets with which they already

have experience – related in the sense that they share one or more common attributes.

This conforms with the insight that diversified firms generally develop products in related

submarkets (Nelson and Winter [1982], Montgomery [1994]). Let Xj,t denote the set of

submarkets that firm j has entered at time t andNj,t denote the number of these submarkets.

We will explain later how a firm enters the industry and discovers its first submarket.

Innovations (by incumbents) are discovered according to a continuous-time Poisson

branching process with mean intensity λ. The parameter λ captures the rate of incumbent

innovation in the industry. For each submarket in which a firm already produces, the prob-

ability of the firm discovering a new submarket in the time interval dt is λdt. Then the

expected number of new submarkets firm j discovers in time interval dt is Nj,tλdt. Thus,

more diversified firms tend to discover innovations more rapidly.

The demand in a new submarket depends on the attributes of that submarket as well as

some degree of randomness. We represent the inverse demand function in submarket x as

7Formally, we assume a non-atomic probability measure µ on S. That is, for any measurable set Ŝ, the
probability that the newly discovered attribute comes from this set is Prob(s ∈ Ŝ) = µ(Ŝ). The assumption
that µ is non-atomic, along with the earlier assumption that S is uncountable, simply helps us avoid the case
that the same exact submarket is discovered multiple times.
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p = p̄(x) −mq, where p is the price of the product, q ≥ 0 is the total quantity demanded

of the product (at any time), m is a parameter that sets the units for the quantity produced,

and for any submarket x, the value of p̄(x) is a random draw on the price at which demand

emerges. As described presently, the distribution of p̄(x) varies across submarkets (i.e.,

depends on the attributes they possess), but the random draws are independent (given these

attributes). The unit cost of production in each submarket is k. A firm monopolizes any

submarket it discovers and so produces the monopoly output qm(x) = p̄(x)−k
2m

(as long

as this is non-negative) and charges the monopoly price pm(x) = p̄(x)+k
2

, which yields a

revenue stream of (p̄(x))2−k2
4m

and a profit stream of (p̄(x)−k)2

4m
.8

Let η(x) ≡ max
(
p̄(x)−k

2m
, 0
)

, so the firm’s submarket output is η(x) and its profits are

m(η(x))2. If it turns out that η(x) = 0, then the firm simply decides not to enter submarket

x after all, and in the case of an arriving startup attempting to enter the industry, the firm

would not be able to form. A firm’s total output (or revenue / profit respectively) is simply

the sum of the output (revenue / profit) it produces in each of its submarkets. So, letting

πj,t denote the profit firm j earns at time t, we have

πj,t =
∑
x∈Xj,t

m
(
η(x)

)2
.

The value of η(x) is determined by the value of p̄(x). We find it convenient to char-

acterize the distribution of η(x) directly rather than through that of p̄(x). To do so, we

introduce parameters zs indicating the quality of any attribute s. In general, we assume that

the distribution of η(x) is strictly increasing (in the sense of shifting its cumulative distri-

bution function strictly downward at every point) in zs for each s ∈ x, i.e., demand (and

profit) is increasing with the quality of each attribute of the submarket. We let Sz denote

8We could work out a similar profit function if the innovating firm were, say, a Stackelberg leader, but
the monopolistic framework is simplest.
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the set of attributes having quality z. We assume some heterogeneity in quality, i.e., that

Prob(s ∈ Sz) < 1 for all z. The quality parameters are not directly observable, but realized

profits in a submarket provide a signal of their values. We also do assume a nontrivial prob-

ability that any submarket x fails (i.e., generates no demand), 0 < Prob
(
η(x) = 0

)
< 1.

A specific example of a distribution that satisfies our assumptions for η(x) is the mixed

geometric distribution,

Prob
(
η(x) = η

)
=

1

|x|
∑
s∈x

zηs (1− zs) for η ∈ {0, 1, 2, . . .}.

With this functional form assumption, the probability that submarket x is a success (i.e.,

generates positive demand) is simply the average of the quality parameters of its attributes,

Prob
(
η(x) > 0

)
= 1
|x|
∑

s∈x zs = z̄x. For this distribution we find it reasonable to restrict

zs ∈ (0, 1
2
] for all s as an acknowledgement that most innovations fail. We will make clear

when we rely on this specific functional form.

The realizations of output η(x) in each submarket x are of course independent events.

Yet, interestingly, related submarkets will appear to have correlated outputs (and profits)

because they both depend on some of the same attributes. If x and x′ refer to randomly

chosen submarkets, then there will be positive correlation in their outputs η(x) and η(x′)

whenever there is a possibility that these submarkets x and x′ share common attributes.9

Indeed, we have assumed that firms grow by discovering submarkets that share common at-

tributes, so the profits in different submarkets discovered by the same firm will be positively

correlated. The growth of a firm is path dependent because expansion into new submarkets

depends on which submarkets it has already entered and because the profitability of these

new submarkets correlates with the profitability of existing, related submarkets.

As discussed in Section 2, firms cannot always recognize the prospects of their innova-

9Moreover, the more closely related the submarkets (holding fixed their complexity), as captured by the
fraction of shared attributes, the greater the correlation (in their values of η and) in their profits.
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tions and sometimes fail to pursue promising submarkets. There are a myriad of reasons

why this might occur, but our model does not require specification of the particular reason

why an incumbent firm may be unable to enter a newly discovered submarket. We simply

recognize that this may occur, and when it does, employees who contributed to the dis-

covery of the innovation may then leave their old firm and form a spinoff (typically with

financial support from another individual or company that can better evaluate the prospects

of the innovation). Accordingly, we assume there is a probability α > 0 that a firm will not

pursue a newly discovered submarket x′ (regardless of its attributes) and that employees at

that firm break off on their own to pursue it. Then, if it turns out that η(x′) > 0, they form

a spinoff, which enters the submarket and hence the industry. The spinoff can continue to

innovate on x′, while the incumbent remains in the pre-existing submarket x. Denote the

number of spinoffs firm j spawns during the interval (t, t′) as σj(t, t′).10

Of course, new firms in the industry are sometimes formed by entrepreneurs with back-

grounds outside of the industry. (Industry pioneers, for example, must by definition be

outside entrants.) These outside startups, without expertise in any existing submarket, are

assumed to enter an “entry-level” or single-attribute submarket with the attribute drawn

from the aforementioned probability distribution on S. We let κ(t) denote the mean arrival

rate of outside startups at time t, with actual arrivals independent random events.

When a new firm enters the industry, it locates in one of R regions. We assume that

the region in which an outside startup enters is random, with the probability of locating in

any particular region r being equal to the share of economic activity in the region (across

all industries), denoted as fr. Spinoffs, however, locate in the same region as their parents.

We will make use of the indicator variable uj,r = 1 if firm j is located in region r and 0

10The mean rate at which firm j spawns spinoffs at time t is

σ̇j,t ≡ lim
∆t→0

E (σj(t, t+ ∆t) |Xj,t) =
∑

x∈Xj,t

λα

∫
S

Prob
(
η (x∪{s}) > 0

)
µ(ds). (1)
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otherwise. Aggregating by region simply involves summing over the firms in existence at

time t, which we denote {1, . . . , Jt}. So, $r,t =
∑

j uj,rπj,t denotes the total profits in

region r at time t, and ςr(t, t′) =
∑

j uj,rσj(t, t
′) denotes the number of spinoffs forming

in region r during the interval (t, t′).11 We denote the first entrant in region r as ̂r.

The fundamental insight underlying the process of spinoff formation is that spinoffs

originate within incumbent firms from new ideas. Because spinoff formation is tied to in-

novation and innovations incorporate some already-known attributes into new submarkets,

our model has built in the feature that spinoffs initially produce products that are similar

to their parents’, i.e., that are in related submarkets (Fact #11). Of course, after a spinoff

enters the industry, it can then continue to innovate on its own. While the spinoff’s and

parent’s product lines will always share a common thread, they may gradually diverge.

We have accommodated Fact #11 directly, but the remaining facts in Table 1 require

explanation. In the following sections we work through the implications of the model and

relate them to these stylized facts. We first tackle the occurrence of clusters, a notable

phenomenon in and of itself.

4 Clustering

In this section we examine the phenomenon of clustering. We show that the formation of

spinoffs implies that we can expect some clustering, and we then address Fact #1.

Ellison and Glaeser [1997] point out that some degree of geographic concentration in

an industry is to be expected as a result of the lumpiness of plants, apart from any agglom-

erative forces that might contribute to clustering. Intuitively, if there are only a limited

number of plants, then an industry’s activity must be unevenly distributed in geographic

space. For simplicity, we assume that all firms operate only one plant. Let θj,t denote the

11The splitting probability α has no effect on regional profits (or output), but it does affect the number of
firms in each region.
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market share12 of firm j at time t and let ϑr,t =
∑

j uj,rθj,t denote the market share of all

firms located in region r at time t. LetHt =
∑

j θ
2
j,t denote the industry Herfindahl index at

time t. A standard measure of clustering at any point in time t is Lt =
∑

r(ϑr,t− fr)2. Fol-

lowing Ellison and Glaeser, we can calculate the expected value of Lt, conditional on the

firm-size distribution, in the case that (contrary to our assumption that spinoffs locate in the

same region as their parent) all firms choose their locations independently with probability

fr of selecting region r.

Lemma 1 (Ellison and Glaeser (1997)) If every firm were to independently locate in a

region r according to the probability fr, then

E(Lt | Jt, θ1,t, . . . , θJt,t) =
(

1−
∑
r

f 2
r

)
Ht.

Ellison and Glaeser thus propose an index of geographic concentration

γt =
Lt − (1−

∑
r f

2
r )Ht

(1−
∑

r f
2
r ) (1−Ht)

that controls for the size distribution of firms. The index is normalized to have mean value

E(γt) = 0 in the case that all firms choose their locations randomly (as if by throwing darts

at a map) with no natural geographic advantages or industry-specific agglomerative forces.

By Lemma 1, if there were no spinoffs, then there would be no clustering (beyond random

fluctuation) in our model (i.e., we would have E(γt) = 0).

Using Ellison and Glaeser’s index, we can establish that in our model, in which the only

agglomerative force is the locational inertia of spinoffs, industries that have experienced

spinoffs are expected to be clustered (see Corollary 1 below). Indeed, if we know the

12We could specify market share by output, revenue, or profit without affecting our results. We make use
of the normalization

∑
j θj,t = 1.
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heritage of all firms in the industry, we can work out the expected value of the Ellison-

Glaeser index. For any outside startup jo, define β(jo) to be the set including the firm

and all of its descendants (i.e., its spinoffs and spinoffs of its spinoffs, etc.). Let θ̂jo,t =∑
j∈β(jo) θj,t denote the combined market share of these firms, and let Ĥt =

∑
jo θ̂

2
jo,t

(summing just over the outside startups).

Theorem 1

E
(
γt
∣∣ Jt, θ1,t, . . . , θJt,t, β(jo){1,...,Jt}

)
=
Ĥt −Ht

1−Ht

.

As a corollary of Theorem 1, we have:

Corollary 1

E
(
γt

∣∣∣ ∑
r

ςr(0, t)
)
> 0 if and only if

∑
r

ςr(0, t) > 0.

Corollary 1 states that conditional on the existence of (one or more) spinoffs, an industry

has a positive expected level of geographic concentration. Intuitively, if spinoffs locate in

the same region as their parent, then firms will be more clustered in regions with successful

initial entrants than would be expected randomly. We can think of it as a special case of

firms being attracted to regions by the presence of others – specifically it is spinoffs being

“attracted” to regions by the presence of their parents.

Spinoff formation requires two events: discovery of a successful submarket and split-

ting the resulting activity off from the parent firm. Only the first event – the innovation

– contributes to the growth of industrial activity in those regions that initially get ahead.

Yet Ellison and Glaeser’s perspective is to take the firm size distribution as given and to

correct for it when measuring the industry’s concentration. From that perspective, in effect

controlling for submarket discovery, the latter event – splitting activity off from the parent
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to form the spinoff – generates higher measured concentration only by distorting the cor-

rection for the finite sample of discrete-size firms. In our model, the profits generated by

spinoffs could just as well have been generated by their parents if they had been able to

follow through on their innovations, but the spinoff entry leads to the industry having more

smaller firms and thus appearing to be more clustered because we overcount the number of

independent location choices. Still, as we explain in the next section, spinoff entry indicates

fertile ground for innovation, which tends to lead to continued growth.

Now that we have established that clustering is a feature of our model, we can address

the pattern that more innovative industries tend to become more clustered.

Theorem 2 At any time t, E(γt) is increasing in λ.

In accordance with Fact #1, our model predicts that the expected level of geographic con-

centration in an industry is increasing in the pace of incumbent innovation. The intuition

is that more innovative industries provide more opportunities for spinoffs to form, and it

is (only) spinoffs that give rise to clustering. (Alternatively, as we decrease the rate of in-

novation and the number of outside startups gets large relative to the number of spinoffs,

clustering eventually vanishes.) It is not surprising that industries like semiconductors and

automobiles exhibit the most extreme clustering. They are famously innovative industries

that underwent rapid expansion, and with so many new ideas being pursued – as well as

not being pursued – by incumbent firms, they naturally had opportunities for spinoffs and

hence ended up highly clustered.

5 The Growth of a Cluster

Having established in Section 4 that clustering will occur in our model, especially in inno-

vative industries, we now shift our focus to the origins of a cluster in a particular region.

Recall that Facts #2-5 tell a story of large business clusters prominently featuring spinoffs.

Two main results in this section, Theorems 3 and 4, show what appears to be a virtuous
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cycle with spinoffs and regional growth. A region’s market share is predictive of the birth

of spinoffs, and spinoffs are predictive of a region’s growth. These results directly address

Facts #3 and #5 respectively. Underlying both phenomena, according to our model, is a

process of innovation with inherent positive feedback. New innovations build on previous

innovations, and they lead to spinoffs and to growth. This self-reinforcing dynamic can

over time amplify an initial advantage in one particular region, an implication (Theorem 5)

that conforms with Fact #2. We will defer discussion of Fact #4 to Section 6, after we have

presented results about the correlates of successful spinoffs. We will come to see this fact

as a natural consequence of a few other stylized facts in our list.

After recognizing that semiconductors and autos are natural candidates for clustering,

we might still ask, why Silicon Valley or why Detroit? How does a particular region come

to lead an industry? The key ingredient, according to our model, is innovation, and with

innovation comes spinoffs. Spinoffs should then be more common in highly active regions:

Theorem 3 For any region r and times t′′ > t′ ≥ t,

cov ($r,t, ςr(t
′, t′′)) > 0.

Theorem 3 states that there is a positive correlation between a region’s share of the profits

in the industry at a given time and the number of spinoffs subsequently spawned there.

Intuitively, regions with greater market share are expected to generate more innovations

and hence more spinoffs. On the other hand, for any particular region the rate of entry

of outside startups is independent of the market share of the region. We thus have a very

straightforward account of the stylized fact that a greater percentage of the entrants in

clusters than elsewhere are spinoffs (Fact #3).

We have accounted for the pattern of spinoffs springing up in clusters, but, in addition,

we observe spinoffs playing a dominant role in the growth of a cluster. In order to charac-
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terize a region’s growth in our model, we introduce a bit of notation. Let ∆πj,t,∆t denote

the (profit) growth of firm j during the interval (t, t+ ∆t).13 Similarly, let ∆$r,t,∆t denote

the growth of region r during the interval (t, t+ ∆t).14

It is straightforward to see that firms’ ability to innovate on each of the submarkets

they have already entered, as well as the correlation in profits between related submarkets,

means that larger firms tend to grow more in absolute terms. Firm growth is approximately,

but not precisely, in accordance with Gibrat’s law, i.e., proportional to current size.15 Sim-

ilarly, by aggregation of all firms in a region, larger regions also tend to grow more in

absolute terms. (See Proposition 1 in the appendix.) This means we often want to control

for the current size of a region when examining the absolute growth of a region.

Even after controlling for the current size of a region, the number of spinoffs in the

region should in our model correlate with the region’s subsequent growth. We can establish

this result formally in the case that there is no heterogeneity in the quality parameters (i.e.,

no uncertainty about the quality of each of the attributes discovered in the region). Let

Xr,t =
⋃
j:uj,r=1Xj,t denote the set of submarkets that firms in region r have entered at

time t.

Theorem 4 For any region r, time t and interval ∆t > 0, and any quality z (that we shall

13We can express the expected growth of firm j(’s profits) at time t, conditional on the set of submarkets
the firm has already entered, as

π̇j,t ≡ lim
∆t→0

E (∆πj,t,∆t |Xj,t) =
∑

x∈Xj,t

λ(1− α)m

∫
S

E
((
η (x∪{s})

)2)
µ(ds). (2)

14The expected growth at time t of region r(’s profits) is

$̇r,t ≡ lim
∆t→0

E (∆$r,t,∆t | Xr,t) = κ(t) frm

∫
S

E
((
η ({s})

)2)
µ(ds) +

∑
j

uj,r
1

1− α
π̇j,t,

capturing the internal growth of existing firms as well as growth through the entry of new firms into the
region.

15Firms pursue new submarkets in proportion to their current number of submarkets, but the profits gener-
ated in each submarket, while positively correlated within a firm or within a region, experience some reversion
to the mean as well. This means that the relative growth rate of larger firms is less than that of smaller firms.
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assume characterizes all attributes discovered in the region) satisfying Prob(s ∈ Sz) > 0,

cov
(
ςr(0, t), ∆$r,t,∆t

∣∣ $r,t,
⋃
Xr,t ⊂ Sz

)
> 0.

In Theorem 4 we are conditioning on the quality of the attributes discovered by firms in the

region, but not on the identity of these attributes, by restricting innovations to a subset of

attributes with homogeneous quality. The theorem states that conditional on this homoge-

neous attribute quality and on a region’s total profit, there is a positive correlation between

the number of spinoffs that have formed in the region and the region’s subsequent growth

in profits. This conforms with Fact #5, which indicates that spinoffs stimulate the growth

of highly clustered regions.

Intuitively, comparing two regions with the same total profits, the one with more past

spinoffs can be expected to have discovered more new submarkets. Assuming no hetero-

geneity in the quality parameters allows us to fully attribute the success of the region with

less spinoffs to a high (random) realization of demand as opposed to high quality of in-

novations discovered there in the past. The latter would bear on the future growth of the

region (through the quality of the submarkets subsequently discovered there), which can

now be ruled out. So, the region with more spinoffs would typically continue to be more

innovative and to experience more subsequent growth.

The assumption of homogeneous quality simplifies our analysis, but is not a necessary

condition. The higher realizations of demand in the region with fewer spinoffs signal higher

quality parameters, but the relative lack of spinoffs itself signals the contrary. The net signal

is equivocal. Moreover, newly discovered submarkets will gradually diverge from existing

ones, so the quality of past innovations matters less over time. On the other hand, the

greater pace of innovation in the region with more spinoffs continues to reinforce itself.

With this insight we can return to the exemplary Silicon Valley semiconductor cluster
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and address the question of what gives rise to such powerful growth. In particular, why did

Silicon Valley grow faster than Dallas when both regions once had similar market shares

and successful flagship firms? Theorem 4 suggests a particularly simple account: Silicon

Valley had more spinoffs. Merely splitting off economic activity into separate corporate

entities might not fundamentally cause explosive growth, but it might well indicate partic-

ularly fertile ground for innovation and hence for explosive growth.16 Both Fairchild in

Silicon Valley and Texas Instruments in Dallas discovered rich veins in which to innovate,

openings into submarkets which would turn out to be immensely profitable. Yet perhaps

the entry of so many spinoffs from Fairchild suggests that these firms had more innovative

opportunities, that they were better positioned to discover the next great innovations that

would drive the growth of Silicon Valley ahead of Dallas.

We have shown that in our model spinoffs accompany the growth of a cluster in a

virtuous cycle. Discovery of new submarkets is at the heart of the spinoff process just as

it also pumps up the growth of a region. To see how this process might get started, we

apply Theorem 3 to the case of a region gaining its first firm in the industry. The size

(profits) upon entry of the initial entrant in a region is predictive of the number of spinoffs

subsequently spawned in that region. Letting t0j be the time at which firm j formed (and t0̂r

specifically be the first time a firm formed in region r):

Theorem 5 For any region r and times t′′ > t′ ≥ t0̂r ,

cov
(
π̂r, t0̂r

, ςr(t
′, t′′)

)
> 0.

Theorem 5 states that there is positive correlation between the profit upon entry of the

16Consistent with this account, regions with many small firms (alongside at least one big firm) are more
innovative (i.e., produce more cited patents) and have a higher rate of spinoff formation than regions without
so many small firms, even after controlling for the size of (i.e., the number of inventors in) each region
(Agrawal et al. [2014]).
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initial firm in a region and the number of spinoffs subsequently spawned in the region.

This means that regions with flagship firms (industry leading initial entrants) are expected

to have more spinoff entrants. The profit of the initial entrant is a signal of the quality

of the first attribute discovered in the region. This attribute will influence the quality of

future submarkets discovered in the region, which in turn conditions whether potential

spinoffs will actually form after an incumbent (potential parent) firm does not pursue a new

submarket. Theorem 5 thus provides an account for the connection of flagship firms in a

region and the subsequent number of spinoffs there (Fact #2).

6 Spinoff Entry and Performance

Sections 4 and 5 have shown how our model accounts for the remarkable connection be-

tween booming industry clusters and spinoffs. Still, it remains to show that our model

accords with the observed patterns about spinoff formation and performance, as described

by Facts #6-10, as well as Fact #4. We now derive results that illustrate these patterns as

they arise in our model.

Some additional notation will help us present these results. Let j
t

be a randomly

selected firm drawn uniformly from among all firms in existence at time t, i.e., from

{1, . . . , Jt}. When we don’t care about the particular time t at which the draw is made,

we may neglect the subscript. Conditioning on the type of firm selected, we identify a

randomly selected outside startup as jo and a randomly selected spinoff firm as js.

We begin with the pattern that spinoffs on average tend to be better performers (i.e.,

more profitable at every age) than other entrants. For this particular result, we adopt the

specific functional form of the mixed geometric distribution for a submarket’s output along

with the restriction that most innovations fail. Our model then implies that spinoffs do

better than outside startups.

Theorem 6 Assume that for any submarket x, output η(x) has a mixed geometric distribu-
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tion, and restrict zs ∈ (0, 1
2
] for all s. At any age τ ,

E
(
πjs, τ+t0

js

)
> E

(
πjo, τ+t0

jo

)
.

In accordance with Fact #6, our model predicts that spinoffs tend to be more profitable at

any given age than outside startups at the same age. The intuition is that spinoffs are more

likely to enter near a higher performing segment of submarkets. The fact that a firm is a

spinoff instead of an outside startup carries information. The spinoff necessarily enters the

industry in a submarket similar (in terms of shared attributes) to some other submarket that

has already proven to be successful for its parent. Because these attributes are incorporated

into the innovations the spinoff subsequently pursues, demand tends to be higher in the

submarkets the spinoff enters than in randomly discovered submarkets stemming from an

entry-level submarket. Consequently, the spinoff is expected to be more profitable than an

outside startup.

Our model also predicts that firms with greater profits (or, similarly, greater market

share) tend to spawn more spinoffs.

Theorem 7 For times t′′ > t′ ≥ t and any firm j selected at time t,

cov (πj,t, σj(t
′, t′′)) > 0.

Theorem 7 states that there is a positive correlation between firm profits at a given time and

the number of spinoffs that the firm subsequently spawns. This result is consistent with

Fact #7. Intuitively, expanding into more submarkets adds to profits and also creates more

opportunities for discovering innovations that occasionally lead to spinoffs. Additionally,

finding high quality submarkets both increases current profits and also increases the likeli-

hood that future innovations will be successful, thereby further enabling spinoff entry. As
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profits follow revenue and, more fundamentally, output, the same argument could be used

to show a positive correlation between market share and subsequent spinoffs.

We can identify multiple factors that influence the quality of our spinoffs. Our model

predicts that more successful spinoffs tend to have more successful parents. Additionally,

spinoffs that are initially more successful tend to do better subsequently. Letting ρ(js)

denote the parent firm from which the spinoff js formed, we have:

Theorem 8 For any spinoff js, profit upon entry correlates with its parent’s profit:

cov
(
πjs, t0

js
, πρ(js), t0

js

)
> 0.

Moreover, both profit upon entry and parent’s profit are predictive of a spinoff’s subsequent

profit growth.17 For any firm age τ , and over any time span ∆t > 0, we have

cov
(

∆πjs, τ+t0
js
,∆t, πjs, t0

js
| πρ(js), t0

js

)
> 0

and

cov
(

∆πjs, τ+t0
js
,∆t, πρ(js), t0

js
|πjs, t0

js

)
> 0.

Theorem 8 indicates a positive correlation between a spinoff’s profit upon entry and its

parent firm’s profit at that time, as well as between a spinoff’s profit growth over time

and both its profit upon entry and its parent’s profit at that time, even after controlling

for the other factor. The same correlations exist with revenues in place of profits. The

correlation between a spinoff’s performance and its parent’s accords with Fact #8. The

additional correlation with the spinoff’s initial performance upon entry accords with Fact

#9. Intuitively, because spinoffs enter the industry producing in submarkets that are related

17The positive correlation between profit growth and profit upon entry actually extends to all firms, not
just to spinoffs.
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to their parents’ (i.e., they initially enter a submarket that shares all but one of its attributes

with one of the parent’s submarkets), the demand in their submarkets are correlated, so we

find that better-performing parent firms breed better-performing spinoffs. On top of this,

starting with high initial profit is another good omen because it too signals that the firm

may have found a rich vein in which to innovate, i.e., that attributes that are retained in all

their future innovations may have high quality, and thus demand in subsequently discovered

submarkets is more likely to be strong.

Moreover, even after controlling for the size (profits) of the parent, the size (profits) of

the entire region should still be predictive of the profitability of a new spinoff. The same

reasoning as in Theorem 8 applies here as well. The success of the entire region provides

another informative signal about the quality of the attributes that (partially) characterize the

submarkets that the spinoff will enter.

Theorem 9 For any spinoff js in any region r (i.e., with ujs,r = 1) and any time t′ > t0js ,

lim
t↗ t0

js

cov
(
$r,t, πjs,t′ | πρ(js), t0

js

)
> 0.

Theorem 9 states that conditional on the parent’s profit at the time it spawns a spinoff, there

is still positive correlation between the total profit in the region at that time and the spinoff’s

profit subsequently. Looking to the extremely successful regions once again, we find that

new spinoffs tend to be most successful in the leading (most highly clustered) region, as

Fact #10 indicated.

Finally, we may return to Fact #4. The general pattern that spinoffs disproportionately

became the industry leaders in the largest clusters follows naturally from two results already

established: spinoffs generally outperform other entrants (Theorem 6), and spinoffs in these

regions in particular have the most success (Theorem 9). When combined with Fact #3, that

the leading regions also have had more spinoffs, it is perhaps no surprise that in some of the
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industries that have been studied, the top tier of leaders eventually consisted exclusively of

spinoffs.

7 The Extent of Clustering

Sections 4-6 have established that our model of the process of innovation and spinoff for-

mation yields a positive expected level of geographic concentration and accords with the

eleven stylized facts described in Section 2. Still, for practical application, we would like to

know how much geographic concentration can be attributed to the innovation and spinoff

process so we can obtain better estimates of the role that traditional localized externalities

play over and above it.

Theorem 1 in Section 4 tells us precisely how much geographic concentration can be

attributed to the innovation and spinoff process and even suggests a straightforward correc-

tion to the Ellison-Glaeser index that would measure the extent of geographic concentration

over and above this level: simply pool the market shares of all firms with shared heritage

in each region, as if these firms composed a single unit, when computing the Herfindahl

index, i.e., replace Ht with Ĥt. Application of this result requires us to trace the industry’s

entire heritage. In practice, tracking the organizational heritage of all the firms in an in-

dustry takes a lot of hard work and has only been done for a few select industries. Until

researchers collect this empirical data, we find it useful to make some numerical estimates

of the degree of clustering that arises in our model solely from the innovation and spinoff

process, in the absence of localized externalities.

Each panel of Figure 1 shows the Ellison-Glaeser index of geographic concentration

over time from 100 simulated runs of the model18 with reasonable parameter values.19 Each

18Our simulation takes the regions to be the 50 states plus the District of Columbia (R = 51) and takes the
share of total economic activity in each region fr to be the share of manufacturing employment there, using
December 2013 BLS data from www.bls.gov.

19The particular specification assumes a constant arrival rate of outside startups, κ(t) = 1, a mixed
geometric distribution for the output η(x) in submarket x, and a uniform distribution over [0, 1

2 ] for the
quality of a randomly discovered attribute zs.
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Figure 1: The Ellison-Glaeser index of geographic concentration over time for 100 simulated runs
of the model, with each run terminating upon reaching 1000 submarkets. The innovation rate λ
varies across the columns, taking on values 0.01, 0.02, 0.05, and 0.1 from left to right. The splitting
probability α varies across the rows, taking on values 0.05, 0.1, and 0.2 from bottom to top.
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simulation was run until there were 1000 submarkets. The time required to reach this many

submarkets varies between runs, but in all cases the long-run behavior of the index becomes

clear by this point. The Ellison-Glaeser index appears to converge asymptotically to a level

that is path dependent. Remarkably, it does not decay toward 0 nor explode toward 1. Two

opposing forces are in balance. Over time the pace of spinoff entry picks up, and that

causes clustering. However, the effect can be seen as distorting the correction for the finite

sample of firms, and the number of firms grows large over time, so this correction would

fade if not for the spinoff and innovation dynamics. If the largest family of firms were to

occupy merely an infinitesimal share of the industry as the number of families grew large,

then the correction would fade entirely and the index would decay toward 0. However,

the positive feedback in the innovation process implies that larger families of firms grow

more quickly and do not ever become inconsequential.20 The population of firms does not

inevitably spread out evenly across locations.21 Thus, clustering can persist.

For each specification of the innovation rate λ (the column) and the splitting probabil-

ity α (the row), the median asymptotic value of the Ellison-Glaeser index (estimated when

reaching 1000 submarkets) is noted in Figure 1. As Theorem 2 claims, the index is in-

creasing in λ. We also see that the index is increasing in α, consistent with the intuition

that more spinoff formation makes an industry appear more highly clustered. If the pace of

innovation is too slow (λ = .01) and splitting from one’s parent firm is relatively unlikely

(α = .05), then clustering practically vanishes. At the other extreme, with rapid innovation

(λ = .1) and a relatively high probability of splitting from one’s parent firm (α = .2), then

the index is atypically large (median value 0.084 and topping out near 0.4 in the largest

20Bottazzi and Secchi (2006) and Luttmer (2007) present models of firm growth in which new technolo-
gies or business opportunities grow out of existing ones, and this positive feedback causes the firm size
distribution to have a fat tail. A similar mechanism in our model is the reason why the largest family of firms
retains a non-negligible market share.

21The population of families of firms does spread out proportionally across locations in the long run, but
the largest families continue to account for a disproportionate share of the industry.
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Figure 2: The Ellison-Glaeser index of geographic concentration and the percentage of firms that
are spinoffs, recorded upon reaching 1000 submarkets, across all 100 simulated runs of the model.
The innovation rate λ varies across the columns, taking on values 0.01, 0.02, 0.05, and 0.1 from left
to right. The splitting probability α varies across the rows, taking on values 0.05, 0.1, and 0.2 from
bottom to top.

of the 100 simulated runs). For comparison, Ellison and Glaeser (1997) report the median

value of their index across 459 U.S. manufacturing industries as 0.026, along with mean

value 0.051, and they identify only four industries with an index greater than 0.4. We do not

have much basis for a precise specification of realistic parameter values (which may well

vary across industries) in our model, but we might use λ = .02 and α = .1 to make a point

estimate of 0.010 as the typical level of the Ellison-Glaeser index with our model. This

estimate suggests that the dynamics of innovation and spinoffs might account for a large

part, but not all, of the observed geographic concentration of manufacturing industries.
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Figure 2 shows scatter plots of the Ellison-Glaeser index and the percentage of firms

that are spinoffs at the termination of each run, upon reaching 1000 submarkets. A straight-

forward consequence of spinoff formation requiring both innovation and splitting off of this

activity is that the percentage of spinoffs (just like the Ellison-Glaeser index) is increasing

in the innovation rate λ (moving to the right across the columns) and in the splitting prob-

ability α (moving up the rows). Additionally, there is some degree of correlation between

the percentage of spinoffs and the Ellison-Glaeser index within each scatter plot, but the

variation within a plot is less pronounced than the variation between plots. This cross-

sectional view shows that more spinoffs lead to greater clustering. The precise value of the

percentage of spinoffs, however, depends on our arbitrary termination point. If the process

were to run forever, the population of firms would come to be completely dominated by

spinoffs. This clearly unrealistic implication of our model is a result of the absence here of

any shakeout process, which surely does operate in the real world.22

Recall that the Ellison-Glaeser index is designed to control for the lumpiness of firms

so that if each firm’s location were independent of its size, the index would not depend

on the Herfindahl. A distinguishing feature of our model is that firms in the same region

are correlated in size (because of the possibility of shared heritage), so the Ellison-Glaeser

index does correlate with the Herfindahl index (as shown in Figure 3 in the appendix).

8 Discussion and Conclusion

The empirical pattern of clusters in various innovative industries growing principally through

spinoff entry – and, moreover, of these spinoffs coming to dominate their industries – is

striking and calls out for explanation. Traditional economic theory is mostly silent on the

origins of a firm. In passing, standard theory might at best suggest that entry is more likely

22Allowing submarkets to perish with an exogenous hazard rate would let us address patterns of firm
exit and perhaps capture industry shakeouts as well, as in Klepper and Thompson [2006]. Spinoffs’ longer
survival could possibly account for the higher survival rate in clusters (cf. Dumais et al. [2002]).
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to take place in clusters because of the advantages of clustering. Perhaps entrants founded

by individuals leaving incumbent firms in the industry somehow have a unique ability to

exploit these advantages. In essence, conventional wisdom attributes observed patterns of

clustering to firms’ incentives. We take a different perspective and suggest that opportunity

matters as much as incentives.23 Innovation creates the opportunity for spinoff firms to

form and for an industry cluster to grow (Schumpeter [1934, 1942]). We develop a theory

based on an underlying process of innovation with positive feedback to account for the

close connection between spinoffs and clustering. Our theory explains empirical regular-

ities about the clustering of innovative industries, the growth of a cluster in a particular

region where spinoffs have proliferated, and the entry and performance of these spinoffs.

Clusters emerge in our model even in the absence of agglomeration economies. Obvi-

ously, the presence of other firms in the same industry can affect the economic climate in

a particular region. Our model, however, cautions against jumping from the observation

of pervasive industry clustering to the conclusion that powerful agglomeration economies

are universal. We noted in Section 1 that firms in clusters perform better, that entry is

concentrated in these regions, and that firms in related industries tend to locate near each

other as well. Each of these patterns could be driven exclusively by spinoffs, which hap-

pen to spring up where there is already activity in the industry and which then outperform

other firms. (To explain the third pattern, we could allow innovations to occasionally cross

the boundaries between industries.) Indeed, in many cases the superior performance of

firms in clusters does not extend beyond spinoffs. In the U.S. automobile industry (Klepper

[2007]), the tire industry (Buenstorf and Klepper [2009, 2010]), the Dutch book publishing

industry (Heebels and Boschma [2011]), the fashion design industry (Wenting [2008]), and

23These perspectives really are complements, not substitutes. Incentives and opportunity both, no doubt,
shape firm behavior. So, too, rational allocation of capital (i.e., responsiveness to incentives) and discovery of
innovation (i.e., exploitation of opportunity) are both necessary ingredients for economic growth. We merely
suggest that the latter constraint is sometimes binding.
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the British automobile industry (Boschma and Wenting [2007]), spinoffs in the respective

industry clusters tend to be superior performers, but other new entrants inside industry clus-

ters have comparable performance to other entrants elsewhere.24 A survey across industries

shows strong evidence that clusters promote entry, but little evidence that they enhance firm

growth or survival (Frenken et al. [2015]).25

The evidence (e.g., higher spinoff rates inside clusters (even after controlling for firm

characteristics)) and our model are consistent with a view of knowledge spillovers, tradi-

tionally thought to benefit an entire cluster, as a Marshallian externality that is specific to

entrepreneurship.26 These spillovers primarily support the formation of spinoffs, which

have access to the technical knowledge developed by their parents. Tacit knowledge fa-

cilitates innovation, and such knowledge is difficult to acquire without being inside an

organization that possesses it. Knowledge can be transferred both through founders and

employees that entrants hire from incumbent firms (Breschi and Lissoni [2009], Cheyre

et al. [2015]). A desire to hire employees from their parents, to tap into their specialized

knowledge base, may well be an important motive for spinoffs to locate close to their par-

ents (Carias and Klepper [2010]), which is of course the critical ingredient for clustering in

our model.27

The phenomenon of spinoffs locating near their parents can occur on top of more

broadly based agglomeration economies or natural advantages that favor a particular re-

gion. Such complementary forces surely do contribute to the agglomeration of at least a

few notable industries (e.g., the movie industry in Hollywood, finance in New York City,

24A conspicuous absence of positive externalities in clusters has also been noted in the metal-working
(Appold [1995]), footwear (Sorenson and Audia [2000]), knitwear (Staber [2001]), biotechnology (Stuart
and Sorenson [2003]), and machine tool (Buenstorf and Guenther [2011]) industries.

25These null findings are consistent with the observation that the development of economic institutions in
a region tends to lag firm growth rather than to precipitate it (Feldman [2001]).

26There could also be a demonstration effect encouraging entrepreneurship (Nanda and Sørensen [2010]).
27The notion that spinoffs might in their formative stages need to recruit labor from their parents helps us

understand why congestion costs in clusters might persist and not drive spinoffs away. (See Stam [2007] for
a careful treatment of relocation costs.)
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steel in Pittsburgh and wine in northern California) and our calculations of the extent of

geographic concentration showing up in our model in Section 7 reveal that the model has

room for them. It would be straightforward to accommodate agglomeration economies

and natural regional advantages in our model by conditioning η(x) (i.e., the firm’s output

in a given submarket and, in turn, the firm’s profit in that submarket) on the location of

the firm as well as the level of industry activity in the region.28 This would generate even

more concentrated regional clusters and a stronger correlation between the market share

of a region and the success of a new firm there. This correlation would then extend be-

yond spinoffs to all firms entering the region, but would still be stronger for spinoffs than

for other entrants. Additionally, this extension of the model would not interfere with, and

actually would strengthen some of, the other patterns we have described.

Our model of the dynamics of spinoff formation and clustering fits naturally into a

framework for evolutionary economic geography that conceives of innovation as a branch-

ing process that generates industrial and urban growth (Boschma and Frenken [2006],

Frenken and Boschma [2007], Buendia [2013]). Economic development is a complex

system. Our model formalizes the intuition that clusters form endogenously, driven by

entrepreneurs building their own firms (Feldman et al. [2005]). Firms grow over time, dis-

covering new submarkets through innovation. Occasionally spinoffs form to pursue these

opportunities. We suggest that in some cases clusters arise as an artifact of the spinoff

process, rather than as the basis for it. Nevertheless, business clusters are still indicative of

rapid technological change and industrial growth.

28Conditioning a firm’s output on its location would be equivalent to assuming that all submarkets include
an attribute characterizing their locations. It would be as if all firms in each region were related.
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Appendix

Glossary of Mathematical Notation
x a submarket, characterized by a finite set of attributes
|x| the number of attributes that characterize submarket x
s a randomly discovered attribute
Xj,t the set of submarkets that firm j has entered at time t
Nj,t the number of submarkets that firm j has entered at time t
λ the rate of innovation in each existing submarket
η(x) the output in submarket x
πj,t the profit firm j earns at time t
zs the quality of attribute s
z̄x the average quality of the attributes of submarket x
Sz the set of attributes having quality z
α the probability that an incumbent firm does not pursue a submarket it discovers and instead

a spinoff attempts to form to pursue it
σj(t, t

′) the number of spinoffs that come out of firm j during the interval (t, t′)
κ(t) the mean arrival rate of outside startups at time t
fr the fraction of overall economic activity occurring in region r
uj,r an indicator variable for firm j being located in region r
Jt the number of firms in the industry at time t
$r,t the total industry profits in region r at time t
ςr(t, t

′) the number of spinoffs that form in region r during the interval (t, t′)
̂r the first entrant in region r
θj,t the market share of firm j at time t
ϑr,t the combined market share of all firms in region r at time t
Ht the industry Herfindahl index at time t
γt the Ellison-Glaeser index of geographic concentration at time t
∆πj,t,∆t firm j’s profit growth during the interval (t, t+ ∆t)
∆$r,t,∆t the growth of region r during the interval (t, t+ ∆t)
Xr,t the set of submarkets that some firm in region r has entered at time t
Nr,t the number of submarkets that firms in region r have entered at time t
t0j the time at which firm j formed
x0
js the first submarket entered by spinoff js

jo a randomly selected outside startup
js a randomly selected spinoff firm
ρ(js) the parent of spinoff js

β(jo) the family of firms descending from the startup jo
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Mathematical Proofs

We begin by introducing a mathematical result that will be useful in many proofs below.

Lemma 2 LetA,B, and Y be random variables. IfA andB are conditionally independent

given Y and their conditional expectations are increasing with Y , then cov(A,B) > 0.

More generally, we can let Y be a set of random variables Y1, . . . , Yn, and it suffices to

assume (along with conditional independence) that E(A|Y1, . . . , Yi) and E(B|Y1, . . . , Yi)

are increasing in Yi for all i.

Proof We begin with the special case that Y is just a single variable. The law of total

covariance states that

cov(A,B) = E
(
cov(A,B |Y )

)
+ cov

(
E(A|Y ), E(B|Y )

)
.

Conditional independence implies that cov(A,B |Y ) = 0, so the first term vanishes. To

show that the second term is positive, we introduce the functions gA(Y ) = E(A|Y ) and

gB(Y ) = E(B|Y ) and an iid copy of the random variable Y ′ ∼ Y . Whenever Y and Y ′

take on different values y and y′ respectively, we have
(
gA(y)−gA(y′)

)(
gB(y)−gB(y′)

)
>

0, because gA and gB are assumed to be increasing, so both factors are positive when y > y′

and both factors are negative when y < y′. Taking expectations with respect to Y and Y ′,

we get:

E
(
gA(Y )gB(Y )

)
−E
(
gA(Y )

)
E
(
gB(Y ′)

)
−E
(
gA(Y ′)

)
E
(
gB(Y )

)
+E
(
gA(Y ′)gB(Y ′)

)
> 0.

So, indeed, cov
(
gA(Y ), gB(Y )

)
> 0.

For the generalization, we need only iterate the law of total covariance by first condi-
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tioning on Y1 and then successively on each subsequent Yi. We obtain

cov(A,B) = E
(
cov(A,B |Y )

)
+

n∑
i=1

E
(

cov
(
EYi(A|Y1, . . . , Yi), EYi(B|Y1, . . . , Yi)

))
.

Once again, the first term vanishes due to conditional independence, and the remaining

terms are positive due to the same argument as in the special case. (For the i’th term, the

expectation is taken over Y1, . . . , Yi−1, and the covariance in that term is positive regardless

of the value taken by these random variables, so the expectation must be positive.)

Proof of Lemma 1

To simplify notation, drop the time t subscript, and consider the market shares θj,t to be

fixed so that conditioning on them is implicit without the need to carry them around. Ex-

pand the quadratic in the definition of L and use the linearity of the expectation operator to

write

E(L) =
∑
r

E(ϑ2
r)− 2frE(ϑr) + f 2

r . (3)

Using Prob(uj,r = 1) = fr and Prob(uj,r = 0) = 1 − fr, which implies Prob(u2
j,r =

1) = fr and Prob(u2
j,r = 0) = 1 − fr and for j 6= ′, Prob(uj,ru′,r = 1) = f 2

r and
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Prob(uj,ru′,r = 0) = 1− f 2
r , we then obtain:

E(ϑ2
r) = E

((∑
j

uj,rθj

)2
)

= E

(∑
j

u2
j,rθ

2
j

)
+ E

(∑
j 6=′

uj,ru′,rθjθ′

)

=
∑
j

θ2
jE(u2

j,r) +
∑
j 6=′

θjθ′E(uj,ru′,r)

=
∑
j

θ2
jfr +

∑
j 6=′

θjθ′f
2
r

= frH +

((∑
j

θj

)2

−
∑
j

θ2
j

)
f 2
r

= frH + f 2
r (1−H).

We can also calculate

E(ϑr) = E(
∑
j

uj,rθj)

=
∑
j

θjE(uj,r) = fr.

Substituting into Equation (3), we then obtain

E(L) =
∑
r

frH + f 2
r (1−H)− 2f 2

r + f 2
r

=
∑
r

(fr − f 2
r )H

=

(
1−

∑
r

f 2
r

)
H.
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Proof of Theorem 1

It follows from Lemma 1 that

E
(
Lt |

(
θ̂jo,t

)
jo∈{1,...,Jt}

)
=

(
1−

∑
r

f 2
r

)
Ĥt.

We plug this directly into the definition of the Ellison-Glaeser clustering index γt.

Proof of Corollary 1

We prove the stronger claim that for any firm-size distribution θ1,t, . . . , θJt,t with Jt > 1,

E
(
γt

∣∣∣ Jt, θ1,t, . . . , θJt,t,
∑
r

ςr(0, t)
)
> 0 if and only if

∑
r

ςr(0, t) > 0.

We expand θ̂jo (again omitting the t subscripts):

θ̂2
jo =

( ∑
j∈β(jo)

θj

)2

=
∑

j∈β(jo)

θ2
j +

∑
j,′∈β(jo)
j 6=′

θjθ′ ≥
∑

j∈β(jo)

θ2
j ,

with the inequality strict whenever |β(jo)| > 1, i.e., whenever σjo(0, t) > 0 (because every

θj > 0.) This implies that conditional on
∑

r ςr(0, t) > 0, we know Ĥt > Ht.

Proof of Theorem 2

Applying the law of iterated expectations to the formula in Theorem 1, we have

E(γt) = E

(
Ĥt −Ht

1−Ht

)
.

We would like to take the derivative with respect to λ and show that it is positive, but

this derivative is not easily calculated. Instead we use a trick to show that it is positive,

without ever expressing it in closed form. The trick is to consider how this derivative,
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∂E(γt)
∂λ

, depends on α.

If α = 0 (and there were no spinoffs), then E(γt) = 0, and so, trivially, E(γt) is

constant with respect to λ, i.e., ∂E(γt)
∂λ

∣∣
α=0

= 0. If we find that ∂E(γt)
∂λ

is increasing in α,

then we will be able to conclude that it is always positive (for α > 0). We now show that

∂2E(γt)
∂λ∂α

> 0.

Whether a submarket is pursued by an incumbent or a spinoff affects the distribution of

market share among firms in the same family, but it does not affect the market share of the

family itself. Thus, Ĥt does not vary with α. So,

∂2E(γt)

∂λ∂α
= −

∂2E
(

Ht
1−Ht

)
∂λ∂α

,

and (because Ht
1−Ht is a monotonic transformation of Ht) it remains to show that ∂

2E(Ht)
∂λ∂α

<

0. A straightforward application of Jensen’s inequality allows us to see that Ht decreases

when the market share of a single firm is split into two separate firms (because (θjs +

θρ(js))
2 > θ2

js+θ
2
ρ(js)), soE(Ht) is decreasing in the fraction of innovations that are pursued

by spinoffs, i.e., in α. The magnitude of this effect is amplified the more innovations there

are, i.e., as λ increases, because each innovation presents another opportunity for a spinoff

to form. So, indeed, ∂
2E(Ht)
∂λ∂α

< 0.

Proof of Theorem 3

This follows directly from Theorem 7. Aggregation across all firms in a region is straight-

forward. A region with a greater share of profits is composed of more profitable firms,29

each of which tends to spawn more spinoffs.

29By more profitable firms, we mean either firms that are more profitable or more firms that are profitable.
The distinction is irrelevant.
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Proof of Theorem 4

We use Lemma 2, conditioning on the number of submarkets in the region Nr,t ≡ |Xr,t|

(as well as on the quality parameters, though not the identities, of these submarkets). The

number of spinoffs ςr(0, t) in the region and the subsequent growth in profits ∆$r,t,∆t are

conditionally independent because the former is determined by whether incumbent firms

missed out on any of these submarkets and this has no bearing on the latter. It remains now

to show that the conditional expectations of the number of spinoffs in the region and the

subsequent profit growth there are both increasing in the number of submarkets discovered.

Clearly the (conditional expectation of the) number of spinoffs is increasing in the number

of submarkets discovered, because each non-entry-level submarket presents another oppor-

tunity for a spinoff to form. Similarly, the (conditional expectation of the) profit growth of

the region is also increasing in the number of submarkets discovered, because each exist-

ing submarket presents another opportunity for an existing firm to innovate and expand the

region.30

Proof of Theorem 5

This follows directly from Theorem 3, letting t = t0̂r .

Proof of Theorem 6

Consider a randomly chosen submarket x that an outside startup might discover. We argue

based on symmetry that a spinoff js at the same age would be at least as likely to discover

the submarket x′ that contains the attributes in x as well as the attributes it inherited from

its parent. Those attributes it inherits from the parent can be expected to be above average

(because we can condition on the fact that the parent was able to form in the first place), so

30After conditioning on the region’s current profits, the number of submarkets discovered is negatively
correlated with the average profit of a submarket. Conditioning on the quality parameters ensures that this is
independent of the profit from any subsequently discovered submarkets.
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the outside startup’s output η(x) would be stochastically dominated by the spinoff’s output

η(x′), too.

Formally, if x−1
js denotes the submarket upon which the parent ρ(js) innovated in the

course of spawning firm js, then x′ = x−1
js ∪ x. For any path by which the outside startup

discovers submarket x, the same path exists for the spinoff js to discover x′, i.e., the same

attributes laid on top of a pre-existing innovation. Additionally, as discussed immediately

below, the chance of such an innovation being successful is higher for the spinoff, which in

turn leads to more opportunities to discover more innovations.

Our claim that η(x) is stochastically dominated by η(x′) (as well as the claim that the

chance of success is higher for the spinoff) follows from the fact that zs | s ∈ {x−1 :

η(x−1) > 0} stochastically dominates zs (a convenient property of the mixed geometric

distribution given the bound zs ≤ 1
2
). That is, conditional on the success of submarket

x−1, and it must have been successful to allow a spinoff to form by innovating from it,

the attributes that make up this submarket, and that are retained in submarkets the spinoff

subsequently enters, should now be thought to have higher quality than an ordinary ran-

domly discovered attribute. The higher quality of the submarkets the spinoff enters should

translate to higher expected profits.

Proof of Theorem 7

We use the general case of Lemma 2, conditioning on the set of submarkets firm j has en-

tered, Xj,t. (First, condition on the number of submarkets, and then condition successively

on each of the quality parameters.) Conditional on these submarkets, πj,t is independent of

σj(t
′, t′′) because all that is left to influence the firm’s profit is the realization of demand

in each of these submarkets and, with the qualities of these submarkets fixed by the con-

ditioning, this does not influence subsequent spinoff formation. We must now show that

both of their conditional expectations are increasing in the realizations of the number of
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submarkets Nj,t and of the quality parameters zs for all s ∈
⋃
Xj,t.

1. It is clear that E(πj,t |Xj,t) is increasing in Nj,t and zs for s ∈
⋃
Xj,t because πj,t =∑

x∈Xj,tm
(
η(x)

)2 and η(x) is increasing (in the sense of stochastic dominance) in zs

for all s ∈ x. That is, the expected profit in any submarket is increasing in the quality

parameters associated with the attributes of that submarket. Moreover, the profits in

any particular submarket are non-negative, so increasing the number of submarkets

can only increase expected total profit.

2. For every t̃ ∈ [t′, t′′], we can see that σ̇j,t̃ is increasing in Nj,t and zs for s ∈
⋃
Xj,t

by examining Equation (1) (in Footnote 10). Increasing the number of submarkets

at time t increases the opportunities for innovations leading to spinoffs at all future

times, and increasing the quality parameters of attributes discovered by time t in-

creases the likelihood of future innovations being successful, enabling more spinoff

entry.

Proof of Theorem 8

We use Lemma 2, conditioning on the first submarket entered by spinoff js, which we

shall denote x0
js . Conditional on (the quality parameters associated with) this submarket,

the parent’s profit πρ(js), t0
js

, the spinoff’s initial profit πjs, t0
js

, and the spinoff’s subsequent

growth ∆πjs, τ+t0
js
,∆t are all independent. Again we show that each of these conditional

expectations is increasing in the quality parameters associated with attributes of this first

submarket.

1. There exists an attribute s∗ ∈ x0
js (perhaps many of them) that was present in all of

the parent firm’s submarkets as well (perhaps along with additional attributes {s∗∗}

that may be present in many, but not necessarily all, of the parent firm’s submarkets).

The parent’s expected conditional profit

E
(
πρ(js), t0

js
|x0

js

)
is then increasing in zs∗ (as well as any other zs∗∗).
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2. The spinoff’s expected conditional profit upon entry E
(
πjs, t0

js
|x0

js

)
is obviously in-

creasing in the quality parameters zs for s ∈ x0
js .

3. Noting that x0
js ⊆ x for all x ∈ Xjs,t̃, for t̃ ∈ [τ + t0js, τ + t0js +∆t], we can refer

to Equation (2) (in Footnote 13) to see that π̇js,t̃ is increasing in each zs for which

s ∈ x0
js because η is increasing in these zs. It then follows that E

(
∆πjs, τ+t0

js
,∆t |x0

js

)
is increasing in each zs for s ∈ x0

js as well.

Proof of Theorem 9

As in the proof of Theorem 8, we use Lemma 2, conditioning on x0
js . We have already

shown in that proof that E
(
πjs,t′ | x0

js , πρ(js), t0
js

)
is increasing in the quality parameters

zs for s ∈ x0
js . Similarly, limt↗ t0

js
E
(
$r,t | x0

js , πρ(js), t0
js

)
is increasing in the same

parameters because for any submarket x ∈ X′, t0
js

that has been discovered by any other

firm ′ 6= ρ(js) that shares an ancestor with js, this submarket x shares (at least one of its)

attributes with x0
js . Both of these variables (with any t < t0js) are, of course, conditionally

independent.

An Ancillary Result

Proposition 1 For any region r, time t and interval ∆t > 0,

cov ($r,t, ∆$r,t,∆t) > 0.

Proof Once again, use the general case of Lemma 2, conditioning on Xr,t. It is straight-

forward to verify that current profit $r,t and subsequent growth ∆$r,t,∆t are conditionally

independent and that both conditional expectations are increasing in the number of submar-

kets in the region Nr,t and the quality parameters zs for all s ∈
⋃
Xr,t.
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Figure 3: The Ellison-Glaeser index of geographic concentration and the Herfindahl index, recorded
upon reaching 1000 submarkets, across all 100 simulated runs of the model. The innovation rate λ
varies across the columns, taking on values 0.01, 0.02, 0.05, and 0.1 from left to right. The splitting
probability α varies across the rows, taking on values 0.05, 0.1, and 0.2 from bottom to top. We
observe positive correlation both within and between panels.
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